EARTH FRENZY RADIO

Your Journey Begins!

Web Search

New Data Shakes Accepted Models Of Collisions Of The Earth Crust

Earth/Science News
This map illustrates the horizontal surface motions of sites in Asia. Eric Calais, a Purdue associate professor of geophysics, used global positioning systems to measure the precise movements of hundreds of points on the continent to determine how they react to collisions of the underlying tectonic plates. (Purdue graphic/Calais laboratory)

Feb 07, 2007
WEST LAFAYETTE, Ind. -- New research findings may help refine the accepted models used by earth scientists over the past 30 years to describe the ways in which continents clash to form the Earth's landscape.
Eric Calais, an associate professor of geophysics at Purdue University, in collaboration with Ming Wang and Zenghang Shen from the Institute for Geology and Earthquake Science in China, used global positioning systems to record the precise movements of hundreds of points on the continent of Asia over a 10-year period.
"Prior to this, we had only partial regional views that were sometimes inconsistent with each other," Calais said. "With this work, we addressed a fundamental question that geologists have been debating for the past 40 years: Are continents strong and brittle or weak and viscous?"
The "strong and brittle" theory suggests continents break into pieces during collisions of the tectonic plates, pieces of the Earth's crust into which the continents are embedded. The "weak and viscous" theory suggests, on the contrary, that continents thicken and flow upon collision.

Multi-Media Information

Multi-Media Information

Video Newsflash

 
Website Disclaimer